Oxides Of Chlorine As Therapeutic
Agents |
By Thomas L. Hesselink,
MD of Aurora, Illinois
1st Edition - Copyright 2007 - All rights are reserved.
This
communication may not be reproduced in whole or in part
without written
permission from the author.
DISCLAIMERS:
- The information presented within these articles and accompanying
communications is offered for legitimate educational and research purposes only.
- This exists as an exercise of the author's constitutional rights to freedom
of speech and to freedom of the press.
- Nothing herein may be construed as providing:
medical advice,
manufacturing advice, business advice, nor any advice whatsoever, nor
endorsement of any kind.
- No claims, no guarantees nor promises of suitability or efficacy for any
purpose are made.
- The reader is further required and should agree not to aid nor to abet any
deceptive, fraudulent, or illegal activity pertaining to any information
obtained herein.
~~~ Links To Articles ~~~
On The Mechanisms Of Toxicity Of Chlorine
Oxides Against Malarial Parasites - An Overview |
|
Research Protocols And
Precautions: |
|
WWW References Pertaining To Oxides Of
Chlorine: |
|
On The Mechanisms Of Toxicity Of Chlorine Oxides Against
Malarial Parasites - An Overview |
By Thomas Lee Hesselink, MD
Copyright September 6, 2007
- The purpose of this article is to propose research.
- Nothing in this article is intended as medical advice.
- No claims, promises nor guarantees are made.
ABSTRACT
Sodium chlorite (NaClO2)
can be acidified as a
convenient method to produce chlorine dioxide (ClO2)
which is a strong oxidant
and a potent disinfectant. A protocol has been developed whereby a solution of
these compounds can be taken orally. This procedure rapidly eliminates malaria
and other infectious agents in only one dose. Chlorine dioxide (ClO2) is highly
reactive with thiols (RSH)
, polyamines
, purines
, certain amino acids and iron, all of which are
necessary for the growth and survival of pathogenic microbes. Properly dosed
this new treatment is tolerable orally with only transient side effects. More
research to better document efficacy in malaria and in other infections is
urgently called for.
DISCOVERY
Jim Humble, a modern gold prospecting geologist,
needed to travel to malaria infested areas numerous times. He or his coworkers
would on occassion contract malaria. At times access to modern medical treatment
was absolutely unavailable. Under such dire circumstances it was found that a
solution useful to sanitize drinking water was also effective to treat malaria
if diluted and taken orally. Despite no formal medical training Mr. Humble had
the innate wisdom to experiment with various dosage and administration
techniques. Out of such necessity was invented an easy to use treatment for
malaria which was found rapidly effective in almost all cases.
The procedure as used by Mr. Humble follows: A 28% stock solution of 80%
(technical grade) sodium chlorite (NaClO2)
is prepared. The remaining
20% is a mixture of the usual excipients necessary in the manufacture and
stabilization of sodium chlorite (NaClO2) powder or flake. Such are mostly
sodium chloride (NaCl) ~19%
, sodium hydroxide (NaOH) <1%
, and
sodium chlorate (NaClO3) <1%
. The actual sodium chlorite (NaClO2)
present is therefore 22.4%. Using a medium caliber dropper (25 drops per cc),
the usual administered dose per treatment is 6 to 15 drops. In terms of
milligrams of sodium chlorite (NaClO2), this calculates out to 9mg per drop or
54mg to 135mg per treatment. Effectiveness is enhanced, if prior to
administration the selected drops are premixed with 2.5 to 5 cc of table vinegar
or lime
juice or 5-10% citric acid
and allowed to react for 3 minutes. The
resultant solution is always mixed into a glass of water or apple juice and
taken orally. The carboxylic acids neutralize the sodium hydroxide (NaOH)
and
at the same time convert a small portion of the chlorite (ClO2-)
to its
conjugate acid known as chlorous acid (HClO2)
. Under such conditions the
chlorous acid (HClO2) will oxidize other chlorite anions (ClO2-)
and
gradually produce chlorine dioxide (ClO2).
Chlorine dioxide (ClO2)
appears in solution as a yellow tint which smells exactly like elemental
chlorine (Cl2)
.
The above described procedure can be repeated a few hours later if necessary.
Considerably lower dosing should be applied in children or in emaciated
individuals scaled down according to size or weight. The diluted solution can be
taken without food to enhance effectiveness but this often causes nausea.
Drinking extra water usually relieves this. Nausea is less likely to occur if
food is present in the stomach. Starchy food is preferable to protein as protein
quenches chlorine dioxide (ClO2)
. Significant amounts of vitamin C
(ascorbic acid)
must not be present at any point in the
mixtures or else this will quench the chlorine dioxide (ClO2)
and
render it ineffective. For the same reason antioxidant supplements should not be
taken on the day of treatment. Other side effects reported are transient
vomiting, diarrhea, headache, dizziness, lethargy or malaise.
EXPLORING BENEFITS
I first learned of Jim Humble's remarkable
discovery in the fall of 2006. That sodium chlorite (NaClO2) or chlorine dioxide
(ClO2) could kill parasites in vivo seemed immediately reasonable to me at the
onset. It is well known that many disease causing organisms are sensitive to
oxidants. Various compounds classifiable as oxides of chlorine such as sodium
hypochlorite (NaClO)
and chlorine dioxide (ClO2)
are
already widely used as disinfectants. What is novel and exciting here is that
Mr. Humble's technique seems: 1) easy to use, 2) rapidly acting, 3) successful,
4) apparently lacking in toxicity, and 5) affordable. If this treatment
continues to prove effective, it could be used to help rid the world of one of
the most devasting of all known plagues. Especially moving in me is the empathy
I feel for anyone with a debilitating febrile illness. I cannot forget how
horrible I feel whenever I have caught influenza. How much more miserable it
must be to suffer like that again and again every 2 to 3 days as happens in
malaria. Millions of people suffer this way year round. 1 to 3 million die from
malaria every year mostly children. Thus motivated I sought to learn all I could
about the chemistry of the oxides of chlorine. I wanted to understand their
probable mechanisms of toxicity towards the causative agents of malaria
(Plasmodium species). I wanted to check available literature pertaining to
issues of safety or risk in human use.
OXIDANTS AS PHYSIOLOGIC AGENTS
Oxidants are atoms or molecules
which take up electrons. Reductants are atoms or molecules which donate
electrons to oxidants. I was already very familiar with most of the medicinally
useful oxidants. I had taught at numerous seminars on their use and explained
their mechanisms of action on the biochemical level. Examples are: hydrogen
peroxide
, zinc peroxide
, various quinones (e.g.
benzoquinone
, rhodizonic acid)
,
various glyoxals (e.g. glyoxal
, methyl glyoxal
, ozone
, ultraviolet light, hyperbaric oxygen
, benzoyl peroxide
, anodes, artemisinin
, methylene blue
,
allicin
, iodine
and permanganate
.
Some work has been done using dilute solutions of sodium chlorite (NaClO2)
internally to treat fungal infections, chronic fatigue, and cancer; however,
little has been published in that regard.
Low dose oxidant exposure to living red blood cells induces an increase in
2,3-diphosphoglycerate
levels inside these cells. This
attaches to hemoglobin (Hb) in such a way that oxyhemoglobin (HbO2) more readily
releases oxygen (O2)
to the tissues throughout the body.
Hyperbaric
oxygenation (oxygen under pressure):
- is a powerful detoxifier against carbon monoxide;
- is a powerful support for natural healing in burns, crush injuries, and
ischemic strokes; and
- is an effective aid to treat most bacterial infections.
Taken internally, intermittently and in low doses many oxidants have been
found to be powerful immune stimulants. Sodium chlorite (NaClO2)
acidified with lactic acid
as in the product "WF10" has similarly been
shown to modulate immune activation. Exposure of live blood to ultraviolet light
also has immune enhancing effects. These treatments work through a natural
physiologic trigger mechanism, which induces peripheral white blood cells to
express and to release cytokines. These cytokines serve as a control system to
down-regulate allergic reactions and as an alarm system to increase cellular
attack against pathogens.
The procedure as used by Mr. Humble follows: A 28% stock solution of 80%
(technical grade) sodium chlorite (NaClO2)
is prepared. The remaining
20% is a mixture of the usual excipients necessary in the manufacture and
stabilization of sodium chlorite (NaClO2) powder or flake. Such are mostly
sodium chloride (NaCl) ~19%
, sodium hydroxide (NaOH) <1%
, and
sodium chlorate (NaClO3) <1%
. The actual sodium chlorite (NaClO2)
present is therefore 22.4%. Using a medium caliber dropper (25 drops per cc),
the usual administered dose per treatment is 6 to 15 drops. In terms of
milligrams of sodium chlorite (NaClO2), this calculates out to 9mg per drop or
54mg to 135mg per treatment. Effectiveness is enhanced, if prior to
administration the selected drops are premixed with 2.5 to 5 cc of table vinegar
or lime
juice or 5-10% citric acid
and allowed to react for 3 minutes. The
resultant solution is always mixed into a glass of water or apple juice and
taken orally. The carboxylic acids neutralize the sodium hydroxide (NaOH)
and
at the same time convert a small portion of the chlorite (ClO2-)
to its
conjugate acid known as chlorous acid (HClO2)
. Under such conditions the
chlorous acid (HClO2) will oxidize other chlorite anions (ClO2-)
and
gradually produce chlorine dioxide (ClO2).
Chlorine dioxide (ClO2)
appears in solution as a yellow tint which smells exactly like elemental
chlorine (Cl2)
.
The above described procedure can be repeated a few hours later if necessary.
Considerably lower dosing should be applied in children or in emaciated
individuals scaled down according to size or weight. The diluted solution can be
taken without food to enhance effectiveness but this often causes nausea.
Drinking extra water usually relieves this. Nausea is less likely to occur if
food is present in the stomach. Starchy food is preferable to protein as protein
quenches chlorine dioxide (ClO2)
. Significant amounts of vitamin C
(ascorbic acid)
must not be present at any point in the
mixtures or else this will quench the chlorine dioxide (ClO2)
and
render it ineffective. For the same reason antioxidant supplements should not be
taken on the day of treatment. Other side effects reported are transient
vomiting, diarrhea, headache, dizziness, lethargy or malaise.
++++++++
Activated cells of the immune system naturally produce strong oxidants as
part of the inflammatory process at sites of infection or cancer to rid the body
of these diseases. Examples are: superoxide (*OO-)
, hydrogen peroxide (H2O2)
,
hydroxyl radical (HO*)
, singlet oxygen (O=O)
and ozone
(O3)
. Another is
peroxynitrate (-OONO)
the coupled product of superoxide (*OO-)
and nitric
oxide (*NO)
radicals.
Yet another is hypochlorous acid (HOCl)
the conjugate acid of
sodium hypochlorite (NaClO)
. The immune system uses these
oxidants to attack various parasites.
OXIDES OF CHLORINE AS DISINFECTANTS
All bacteria have been
shown to be incabable of growing in any medium in which the oxidants (electron
grabbers) out-number the reductants (electron donors). Therefore, oxidants are
at least bacteriostatic and at most are bacteriocidal. Many oxidants have been
proven useful as antibacterial disinfectants. Hypochlorites (ClO-)
are commonly used as bleaching agents, as swimming pool sanitizers, and as
disinfectants. At low concentrations chlorine dioxide (ClO2)
has
been shown to kill many types of bacteria, viruses and protozoa. Ozone (O3)
or chlorine dioxide (ClO2)
are often used to disinfect public water supplies or to sanitize and deodorize
waste water. Sodium chlorite (NaClO2)
or chlorine dioxide (ClO2)
solutions are used in certain mouth washes to clear mouth odors and oral
bacteria. Chlorine dioxide (ClO2) sanitizes food preparation facilities.
Acidified sodium chlorite is FDA approved as a spray in the meat packing
industry to sanitized meat. This can also be used to sanitize vegetables and
other foods. Farmers use this to cleanse the udders of cows to prevent mastitis,
or to rid eggs of pathogenic bacteria. Chlorine dioxide (ClO2) can be used to
disinfect endoscopes. Oxidants such as iodine
, various peroxides
, permanganate
and chlorine dioxide
can be applied topically to the skin to
treat infections caused by bacteria or fungi.
MALARIA IS OXIDANT SENSITIVE
From November 2006 through May of
2007 I spent hundreds of hours searching biochemical literature and medical
literature pertaining to the biochemistry of Plasmodia. Four species are
commonly pathogenic in humans namely: Plasmodium vivax, Plasmodium falciparum,
Plasmodium ovale and Plasmodium malariae. What I found was an abundance of
confirmation that, just like bacteria, Plasmodia are indeed quite sensitive to
oxidants. Examples of oxidants toxic to Plasmodia include: artemisinin
, artemether
, t-butyl
hydroperoxide
, xanthone
, various quinones (e.g. atovaquone
, lapachol
, beta-lapachone
,
menadione
) and
methylene blue
.
TARGETING THIOLS
Like bacteria, fungi and tumor cells, the
ability of Plasmodia to live and grow depends heavily on an internal abundance
of reductants. This is especially true regarding thiol compounds also known as
sulfhydryl compounds (RSH)
. Thiols as a class behave as reductants (electron
donors). As such they are especially sensitive to oxidants (electron grabbers).
Thiols (RSH) such as
glutathione
and other sulfur compounds are reactive with sodium chlorite (NaClO2)
and
with chlorine dioxide (ClO2)
. These are the very agents present in
Mr. Humble's solution. Possible products of oxidation of thiols (RSH)
using various
oxides of chlorine are: disulfides (RSSR)
, disulfide monoxides (RSSOR)
, sulfenic acids (RSOH)
, sulfinic acids (RSO2H)
and
sulfonic acids (RSO3H)
.
None of these can support
the life processes of the parasite. Upon sufficient removal of the parasite's
life sustaining thiols (RSH)
by oxidation, the parasite rapidly dies. A list of
thiols (RSH) upon which survival of Plasmodium species heavily depend includes:
dihydrolipoic acid
, coenzyme A
and acyl carrier protein
, glutathione
, glutathione reductase,
glutathione-S-transferase, peroxiredoxin, thioredoxin, glutaredoxin,
plasmoredoxin, thioredoxin reductase, falcipain and ornithine decarboxylase.


HEME IS AN OXIDANT SENSITIZER
Of particular relevance to
treating malaria is the fact that Plasmodial trophozoites living inside red
blood cells must digest hemoglobin (Hb) as their preferred protein source. They
accomplish this by ingesting hemoglobin (Hb) into an organelle known as the
"acid food vacuole". Incidently, the high concentration of acid in this
organelle could serve as an additional site of conversion of chlorite (ClO2-)
to
the more active chlorous acid (HClO2)
or chlorine dioxide (ClO2)
right
inside the parasite. Furthermore, Plasmodia consume 50 to 100 times more glucose
than noninfected red blood cells most of which is metabolized to lactic acid
another
known activator of chlorite (ClO2-).
Next falcipain a hemoglobin digesting enzyme hydrolyzes hemoglobin protein to
release its nutritional amino acids. A necessary byproduct of this digestion is
the release of 4 heme molecules
from each hemoglobin molecule digested. Free heme
(also known as ferriprotoporphyrin IX) is redox active and can react with
ambient oxygen (O2)
, an abundance of which is always present in red
blood cells. This produces superoxide radical (*OO-)
,
hydrogen peroxide (H2O2)
and other reactive oxidant toxic species
(ROTS). These can rapidly poison the parasite internally. To protect themselves
against this dangerous side-effect of eating blood protein, Plasmodia must
maintain a high reductant capacity (an abundance of reduced thiols (RSH)
and NADPH
) to quench these ROTS. This
is their main mechanism of antioxidant defense.
Plasmodia must also rapidly and continuously eliminate heme
, which is accomplished by two methods.
Firstly, heme is polymerized producing hemozoin. Secondly, heme is metabolized
in a detoxification process that requires reduced glutathione (GSH)
. Therefore any
method (especially exposure to oxidants) which limits the availability of
reduced glutathione (GSH) will cause a toxic build up of heme and of ROTS inside
the parasite cells. Sodium chlorite (NaClO2) and chlorine dioxide (ClO2) (the
exact agents present in Mr. Humble's treatment) readily oxidize glutathione
(GSH). Therefore, a rapid killing of Plasmodia upon taking acidified sodium
chlorite orally should be expected.
OVERCOMING ANTIBIOTIC RESISTANCE WITH OXIDATION
Now the issue
of resistance of Plasmodium species to commonly used antiprotozoal antibiotics
must be addressed. Quinine
, chloroquine
, mefloquine
, quinacrine
, amodiaquine
, primaquine
and other quinoline-like
antibiotics
all
work by blocking the heme
detoxifying system inside the trophozoites. Many Plasmodial strains against
which quinolines have repeatedly been used have found ways to adapt to these
drugs and to acquire resistance. Research into the mechanisms of resistance has
found that often resistance is accomplished by a meere upregulation of
glutathione (GSH)
production and utilization. Consequently
oxidizing or otherwise depleting glutathione (GSH) inside the parasite usually
restores sensitivity to the quinoline antibiotics. Therefore, protocols
combining the use of oxidants with quinolines are under developement and already
showing signs of success. In this context let us consider that no amount of
intraplasmodial glutathione (GSH) could ever resist exposure to a suffient dose
of chlorine dioxide (ClO2)
. Note that each molecule of chlorine
dioxide (ClO2) can disable 1 to 5 molecules of glutathione (GSH) depending on
the reaction mechanism.
2(GSH) + 2(ClO2) --> 1(GSSG) + 2(H+) + 2(ClO2-)
or 10(GSH) + 2(ClO2) --> 5(GSSG) + 2(H+) + 2(Cl-) + 4(H2O)
|
SOME INCOMPATIBILITIES
Acidified sodium chlorite could provide
a powerful new opportunity to improve or to restore sensitivity to quinolines
by virtue of
its oxidative power. However, quinolines contain secondary amino groups
or tertiary amino groups
which react with chlorine dioxide (ClO2)
in such a way that both could destroy each other. Some possible strategies to
resolve this incompatibility are suggested below.
- Acidified sodium chlorite could be used as explained above only as a solo
therapy.
- Quinoline administration could be withheld until after the acidified sodium
chorite has completed its action.
- Patients already preloaded with a quinoline could stop this, wait a suitable
period of time for this to wash out, then administer the acidified sodium
chlorite.
- The quinoline could remain in use and while the less active sodium chlorite
is administered without acid. This should retain plenty of oxidant effectiveness
without destroying any quinoline or wasting too much oxidant.
- Switch from a quinoline to an endoperoxide (such as artemisinin) or to a
quinone (such as atovaquone) before using acidified sodium chlorite, as these
may be less sensitive toward destruction by chlorine dioxide.
Similar
problems apply to methylene blue
and many other drugs if they have an
unoxidized sulfur atom, a phenol group
, a secondary amine
or a tertiary amine.
Such are reactive with the chlorine dioxide
(ClO2)
component.
REDUCTANT RECOVERY SYSTEMS
Living things possess a recovery
system to rescue oxidized sulfur compounds. It operates through donation of
hydrogen atoms to these compounds and thereby restores their original condition
as thiols (RSH)
.
This system is known as the hexose monophophate shunt. A key player in this
system is the enzyme glucose-6-phosphate- dehydrogenase (G6PDH).
This enzyme is an
essential part of a complex process that produces NADPH
the main provider of reductants to the
reductases (enzymes which convert oxidized sulfur compounds back into thiols
(RSH)
).
Patients with a genetic defect of G6PDH, known as
glucose-6-phosphate-dehydrogenase deficiency disease, are especially sensitive
to oxidants and to prooxidant drugs. However, this genetic disease has a benefit
in that such individuals are naturally resistant to malaria. They can still
catch malaria, but it is much less severe in them, since they permanently lack
the enzyme necessary to assist the parasite in reactivating glutathione
disulfide (GSSG)
and other oxidized thiols. Chlorine
dioxide (ClO2)
has been shown to oxidize and denature
G6PDH by reaction with the tyrosine
and the tryptophan
residues inside the enzyme.
Furthermore, G6PDH is sensitive to inhibition by sodium chlorate (NaClO3)
,
another member of the chlorine oxide family of compounds. Sodium chlorate
(NaClO3) is a trace ingredient present in Jim Humble's antimalarial solution.
Some sodium chlorate (NaClO3)
should also be produced in vivo by a slow
reaction of chlorine dioxide (ClO2) with water under alkaline conditions.
2(ClO2) + 2(OH-) -> (ClO2-) + (ClO3-) +
H2O |
The Plasmodia may attempt to restore any thiols (RSH)
lost to
oxidation. However, this becomes more difficult as G6PDH is inhibited by
chlorine dioxide (ClO2)
or by chlorate (ClO3-)
.
TARGETING IRON
While most available literature refers to redox
imbalances causing depletion of necessary thiols (RSH)
. Other
mechanisms of toxicity of the oxides of chlorine against Plasmodia should also
be considered. Oxides of chlorine are generally rapidly reactive with ferrous
iron (Fe++) converting it to ferric (Fe+++). This explains why in cases of
overdosed exposures to oxides of chlorine such as sodium chlorite (NaClO2)
there
was a notable rise in methemoglobin levels. Methemoglobin is a metabolically
inactive form of hemoglobin in which its ferrous iron (Fe++) cofactor has been
oxidized to ferric (Fe+++).
In living things including parasites iron is a
necessary cofactor for many enzymes. Thus it is reasonable to expect that any
damage to Plasmodia caused by oxides of chlorine is compounded by conversion of
ferrous (Fe++) cofactors to ferric (Fe+++) or other alterations of iron
compounds. Superoxide dismutase (SOD) inside Plasmodial cells also utilizes iron
in its active center. Chlorine dioxide
also oxidizes manganese (Mn++).
TARGETING POLYAMINES
Other metabolites necessary for survival
and growth in tumors, bacteria and parasites are the polyamines. Plasmodia quit
growing and die, when polyamines are lacking, or when their functions are
blocked. Polyamines are also sensitive to oxidation and can be eliminated by
strong oxidants. When oxidized, polyamines are converted to aldehydes
,
which are deadly to parasites and to tumors. Chlorine dioxide (ClO2)
is
known to be especially reactive against secondary amines
. This includes spermine
and spermidine
the two main biologically
important polyamines.
Thus any procedure, which is successful to oxidize
both thiols (RSH)
and polyamines does quadruple damage to the pathogen:
- oxidation of the thiol containing protein ornithine decarboxylase

inhibits polyamine synthesis;
- oxidation of the thiol containing protein S-adenosyl-L-methionine
decarboxylase

also inhibits polyamine synthesis;
- oxidation of the secondary amines spermidine
and spermine 
depletes polyamine supplies;
- the products of polyamine oxidation are toxic aldehydes
.
TARGETING PURINES
Purines
are essential to many life processes. These
molecules have a double ring structure. The rings are heterocyclic being
composed of both carbon and nitrogen. The secondary amino nitrogen atoms
are vulnerable to reaction with chlorine
dioxide (ClO2)
. Examples of important biologic purines
are xanthine
,
hypoxanthine
, inosine
, guanine
and adenine
. Guanine and adenine are essential components of
DNA and RNA necessary for all genetic functions and for all protein syntheses.
Adenine is an essential component of the cofactors NADH
, NADPH
, FAD
and ATP
, necessary for many metabolic functions including
oxidation- reduction and energy metabolism. Any purines lost because of chlorine
dioxide (ClO2)
exposure can be readily replaced by host
cells. Plasmodia and other apicomplexae are uniquely vulnerable to purine
deficiency as they lack
the enzymes necessary to produce purines for themselves. Instead these must be
scavenged from host cells and imported across the plasma membranes of the
parasite cells. Drugs are under development to inhibit purine utilization by
Plasmodia and are already showing signs of success. Temporarily destroying some
of the purines in the blood as should occur upon brief exposure to chlorine
dioxide (ClO2)
in vivo is probably an additional stress
that Plasmodia cannot tolerate.
TARGETING PROTEINS
Chlorine dioxide (ClO2)
is
highly reactive with thiols (RSH)
, phenols
, secondary amines
and tertiary amines
. Therefore, proteins composed of amino
acids which present these reactive groups are vulnerable to oxidation by this
agent. Proteins which present thiol groups as residue(s) of the amino acid
L-cysteine
are discussed above under
TARGETING THIOLS. L-tyrosine
presents a phenol group and is therefore
similarly vulnerable. L-tryptophan
, L-histidine
, L-proline
and 4-hydroy-L-proline
present secondary amino
groups which are also especially reactive with chlorine dioxide (ClO2)
.
SAFETY ISSUES
A remaining concern is safety. So far, at least
anecdotally, the dosages of chlorine oxides as administered orally per Jim
Humble's protocol have produced no definite toxicity. Some have taken this as
often as 1 to 3 times weekly and on the surface seem to suffer no ill effects.
To be certain if this is safe more research is warranted for such long term or
repeated use. The concern is that too much or too frequent administration of
oxidants could excessively deplete the body's reductants and promote oxidative
stress. One useful way to monitor this may be to periodically check
methemoglobin
levels in frequent users. Sodium chlorite (NaClO2)
, as found in municipal water
supplies after disinfection by chorine dioxide (ClO2)
, has
been studied and proven safe. Animal studies using much higher oral or topical
doses have proven relatively safe. In a suicide attempt 10g of sodium chlorite
(NaClO2) taken orally caused refractory methemoglobinemia and nearly fatal
kidney failure. Inhalation or aerosol exposure to chlorine dioxide (ClO2) gas is
highly irritating and generally not recommended. Special precautions must be
employed in cases of glucose-6-phosphate-dehydrogenase deficiency disease, as
these patients are especially sensitive to oxidants of all kinds. Nevertheless,
oral acidified sodium chlorite solutions might even be found safe and effective
in them, but probably will need to be administered at lower doses.
MORE RESEARCH
It is hoped that this overview will spark a
flurry of interest, and stimulate more research into the use of acidified sodium
chlorite in the treatment of malaria. The above appreciated observations need to
be proven more rigorously and published. The biochemistry most likely involved
suggests that other members of the phylum Apicomplexa should also be sensitive
to this treatment. This phylum includes: Plasmodium, Babesia, Toxoplasma,
Cryptosporidium, Eimeria, Theileria, Sarcocystis, Cyclospora, Isospora and
Neospora. These pathogens are responsible for widespread diseases in humans,
pets and cattle. Other thiol (RSH)
dependent parasites should also be susceptible to
acidified sodium chlorite. For example Trypanosoma and Leishmania extensively
utilize and cannot survive without the cofactor known as trypanothione.
Each
molecule of trypanothione presents 2 sulfur atoms and 5 secondary amino groups
all of which are vulnerable to oxidative destruction from chlorine dioxide
(ClO2)
.
Chlorine dioxide (ClO2) has been proven to be cidal to almost all known
infectious agents in vitro using remarkably low concentrations. This includes
parasites, fungi, bacteria and viruses. The experiences noted above imply that
this compound is tolerable orally at effective concentrations. Therefore
extensive research is warranted to determine if acidified sodium chlorite is
effective in treating other infections. We may be on the verge of discovering
the most potent and broad spectrum antimicrobial agent yet known. Special thanks
go to Jim Humble for his willingness to share his discovery with the world.
by Thomas Lee Hesselink, MD
References are available upon
request.
Back to home page.
Link zum deutschen Text:
http://meine-aura.de/malaria/main2.php?p=Chlordioxid3
Die Oxidationsvorgänge im Zusammenhang mit der
Applikation von Chlordioxid
Vorwort:
Die folgenden Informationen beziehen sich auf den Bericht des amerikanischen
Arztes MD Thomas Lee Hesselink
Der Bericht beruht auf der Analyse von 162 Literaturstellen. Anlass für seine
Untersuchungen waren die Erfolge bei der Anwendung eines Produktes zur Erzeugung
von Chlordioxid.
Anmerkung: Die „Ich-Form“ weist auf die Meinung von Thomas Lee Hesselink
hin.
Es wird damit erstmalig eine Zusammenfassung der mit Chlordioxid im
Zusammenhang stehenden Oxidationsvorgänge im Menschen gegeben. Mit diesen
folgenden Beschreibungen können die in den WHO-Guidelines 2006 Werte zur
toxischen Wirksamkeit von Chlordioxid hinsichtlich Bakterien, Viren
und Parasiten plausibel begründet werden.
Besonders bemerkenswert sind Schlussfolgerungen von T.L. Hesselink bezüglich
der Wirkung von Chloriten und Chloraten auf das Absterben von Parasiten.
Diese Darlegungen stehen im offensichtlichen Gegensatz zu der geläufigen
Auffassung, dass Chlorite und Chlorate grundsätzlich für den menschlichen
Organismus schädlich seien. Es scheint sich der Grundsatz „ Dosis facid venenum-
Die Dosis macht das Gift“ zu bestätigen. Wenn Chlorite und Chlorate
lediglich Gift für die Bakterien, Viren und Parasiten wären, dann ist das
positiver und weiterhin untersuchungswürdiger Effekt.
Der Bericht kann all
denen nützlich sein, die sich tiefere Klarheit über die ganzheitlichen
desinfizierenden Wirkungen von Chlordioxid verschaffen wollen. Unabhängig
von den Wirkungen von Chloridoxiden in den Stoffwechselprozessen der Lebewesen,
werden durch Thomas Lee Hesseling wesentliche Argumente zur Anwendung von
Chlordioxid für die Sicherung der Qualität des Wassers für den menschlichen
Verzehr beschrieben. Es zeigt einen Weg zur Aufbereitung des Wassers für den
menschlichen Verzehr in den subtropischen und tropischen Gebieten so zu
behandeln.
Es folgen jetzt die zusammengefassten Erkenntnisse von Thomas Lee
Hesselink:
1. Oxidationsmittel als physiologische Wirkstoffe
Mit den meisten anderen bekannten medizinisch nützlichen Oxidationsmitteln
war ich bereits vertraut. Genannt seien hier:
Wasserstoffperoxid, Zinkperoxid, verschiedene Chinone, verschiedene Glyoxale,
Ozon, ultraviolettes Licht, hyperbarer Sauerstoff, Benzylperoxid, Artemisinin,
Methylenblau, Allizin, Jod, Permanganat.
Ich habe zahlreich Seminare darüber gehalten, wie man sie anwendet und wie
sie auf biochemischer Ebene funktionieren.
Oxidationsmittel sind Atome oder
Moleküle, die Elektronen aufnehmen. Reduktionsmittel dagegen sind Atome oder
Moleküle, die Elektronen an Oxidationsmittel abgeben.
Setzt man lebende rote
Blutkörperchen einer geringen Menge eines Oxidationsmittels aus, ändert sich die
Oxyhämoglobin-Aktivität ( Hb-O2) dahingehend, dass mehr Sauerstoff in das Gewebe
abgegeben wird. Hyperbare Oxygenierung ( unter erhöhten Druck gesetzter
Sauerstoff):
- wirkt effektiv entgiftend gegen Kohlenstoffmonoxid;
- unterstützt die
natürlichen Heilungsprozesse bei Verbrennungen, Quetschungen und ischämischen
Schlaganfall immens und ist ein wirkungsvolles Mittel gegen bakterielle
Infektionen.
- Innerlich, periodisch und in kleinen Dosen angewandt,
stimulieren viele Oxidationsmittel das Immunsystem sehr effektiv. Eine ähnliche
Wirkung erzielt man, wenn man lebende Blutzellen ultraviolettem Licht
aussetzt.
Diese Behandlungsmethoden wirken durch einen natürlichen physiologischen
Impulsmechanismus, der periphere weiße Blutkörperchen dazu anregt, Zytokine zu
bilden. Diese Zytokine dienen als Alarmsystem und sorgen dafür, dass die Zellen
vermehrt Krankheitserreger angreifen und allergische Reaktionen verhindert
werden.
Aktivierte Zellen des Immunsystems produzieren im Rahmen eines
Entzündungsprozesses wirksame natürliche Oxidationsmittel, um den Körper an
Infektions- oder Krebsherden von der jeweiligen Krankheit zu befreien.
Eines
dieser natürlichen Abwehr-Oxidationsmittel ist Wasserstoffperoxid. Ein anderes
ist Peroxynitrat, ein Produkt aus Superoxid-Radikalen und Stickoxid-Radikalen.
Ein weiterer ist hypochlorige Säure, die konjugierte Säure von
Natriumhypochlorit.
2. Oxidationsmittel als Keimtöter
Verschiedene starke Oxidationsmittel sind als Desinfektionsmittel weit
verbreitet. Es ist bewiesen, dass Bakterien nicht in der Lage sind, sich in
einem Medium auszubreiten, das mehr ( Elektronen aufnehmende) Oxidationsmittel
als ( Elektronen abgebende ) Reduktionsmittel enthält. Somit sind
Oxidationsmittel bakteriostatisch, wenn nicht gar bakteriozid.
Einige
Oxidationsmittel wie Jod, diverse Peroxide und Permanganat werden oberflächlich
auf der Haut angewandt, um Infektionen vorzubeugen, die von Bakterien oder
Pilzen ausgelöst werden. Chlordioxid wird ähnlich verwendet.
Hypochlorite kommen vor allem als Bleichmittel zum Einsatz, dienen aber
auch zur Entkeimung von Schwimmbädern und als Desinfektionsmittel. Chlordioxid
wie auch Ozon werden als keimtötende Mittel zur Wasseraufbereitung
genutzt.
Natriumchlorit-Lösungen werden schon lange als Mundwasser gegen
Mundgeruch und Bakterien im Mundraum verwendet. Mit Säure versetztes
Natriumchlorit ist von der FDA in der Fleischverpackungsindustrie als Spray zur
Desinfektion von Fleisch zugelassen. Landwirte benutzen das Mittel, um Kuheuter
zu reinigen und so Mastitis vorzubeugen und um Eier von krankheitserregenden
Bakterien zu reinigen. Chlordioxid tötet zudem viele Viren ab. Mit
angesäuertem Natriumchlorit kann man sogar Gemüse keimfrei machen. Es wurden
Versuche unternommen, mittel oral verabreichter Natriumchlorit-Lösungen
Pilzinfektionen, chronische Müdigkeit und Krebs zu behandeln. In dieser Hinsicht
ist leider nur sehr wenig in der Literatur veröffentlicht worden.
3. Malaria ist anfällig für Oxidationsmittel
Von November 2006 bis Mai 2007 habe ich viele 100 Stunden damit zugebracht,
biochemische und medizinische Literatur nach der biochemischen Funktionsweise
von Plasmodien zu durchsuchen. Vier Spezies sind für den menschlichen Körper
pathogen:
- Plosmodium vivax
- Plasmodium falciparum
- Plosmodium
ovale
- Plasmodium malariae.
Dabei stieß ich auf ein Fülle von hinweisen darauf, dass Plasmodien, ebenso
wie Bakterien anfällig gegenüber Oxidationsmitteln sind.
Schädlich für
Plasmodien sind beispielsweise: Artemisinin, Atovaquon, Menadion und
Methylenblau.
Zudem hängt das Wachstum und Überleben von Plasmodien, wie auch
von Bakterien und Tumorzellen, stark davon ab, ob genügend Thiol-Verbindungen
vorhanden sind.
Thiole sind auch bekannt als Sulhydrylgruppen (RSH) und
verhalten sich als Gruppe wie ( Elektronen abgebende ) Reduktionsmittel. Das
macht sie höchst empfindlich gegenüber Oxidationsmitten. Sie reagieren leicht
mit Chloroxiden und dazu zählen auch Natriunchlorit und Chlordioxid, eben die
Wirkstoffe in Humbles Lösung.
Wenn Thiole mit Chloroxiden (so auch
Chlordioxid) oxidieren, kommen u.a. folgende Stoffe heraus: Disulfid (RSSR),
Disulfidmonooxid (RSSOR), Sulfensäure (RSOH), Sulfinsäure(RSO2H), Sulfonsäure
(RSO3H). Alle diese Stoffe entziehen dem Parasiten die Lebensgrundlage.
Sind
durch die Oxidation die für den Parasiten lebenswichtigen Thiole vernichtet,
dann stirbt dieser.
Zu den für die Plasmodien-Spezies überlebensnotwendigen
Thiolen gehören: Liponsäure und Dihydroliponsäure, das Coenzym A und das
Acyl-Trägerprotein, Glutathion, Glutathion-Reduktase, Glutathionoxin,
Plasmoredoxin, Thioredoxin-Reduktase,Ornithin-Decarboxylase, und Falcipain.
4. Häme als Sensibilisatoren von Oxidationsmitteln
Von besonderer Bedeutung für die Behandlung von Malaria ist, dass die
bevorzugte Proteinquelle der plasmodialen Trophozoiten im Inneren der roten
Blutkörperchen Hämoglobin ist. Dabei nehmen sie das Hämoglobin in eine Organelle
auf, die sich „saure Nahrungsvakuole“ nennt. Die hohe Säurekonzentration in
dieser Organelle könnte zusätzlich zur Umwandlung von Chlorit in das weit
aktivere Chlordioxid beitragen, und zwar im Inneren des Parasiten.
Als
nächstes hydrolisiert Falcipain ( ein Hämoglobin verdauendes Enzym) das
Hämoglobin-Protein und setzt dessen nahrhafte Aminsäuren frei.
Ein wichtiges
Nebenprodukt dieses Verdauungsprozesses ist, dass aus jedem verdauten
Hämoglobin-Molekül vier Häm-Moleküle freigesetzt werden.
Freie Häm-Moleküle
(auch Ferriprotoporphyrin genannt) sind redoxaktiv und können daher mit dem sie
umgebenden Sauerstoff reagieren, von dem in roten Blutkörperchen immer reichlich
vorhanden ist. Daraus entstehen Superoxid-Radikale, Wasserstoffperoxid und
andere reaktive toxische Arten von Oxidationsmitten. Diese vergiften den
Parasiten von innen heraus. Um sich selbst vor dem gefährlichen Nebeneffekt des
Blutprotein-Konsums zu schützen, müssen Plasmodien permanent und schnell Häme
eliminieren.
Das wird auf zwei Wegen erreicht: Zum einen werden Häm-Moleküle
polymerisiert und bilden Hämozoin. Zum anderen werden Häme in einem
Entgiftungsprozess abgebaut, für den reduziertes Glutathion (GSH) nötig
ist.
Weil Herr Humble genau diese zwei Wirkstoffe in seinem Mittel verwendet,
ist nur wahrscheinlich, dass der bereits beobachtete Effekt -das Absterben
von Plasmodien- auch hier eintritt.
Daher sorgt alles, was verhindert,
das der Parasit an reduziertes Glutathion gelangt( auch der Kontakt zu
Oxidationsmitteln), in den Zellen des Parasiten für einen Stau an toxischen
Häm-Molekülen. Da Natriumchlorit und Chlordioxid Glutathion oxidieren,
unterbinden sie den Entgiftungsprozess des Parasiten.
5. Überwindung von Antibiotika-Resistenz mittels Oxidation
In diesem Zusammenhang muss auch die Resistenz der verschiedenen
Plasmodien-Spezies gegenüber den gebräuchlichen antiprotozoalen Antibiotika
angesprochen werden. Quinin, Chloroquin, Mefloquin und andere
Chinolin-Antibiotika wirken dadurch, dass sie das Häm-Entgiftungssystem in den
Trophozoiten blockieren. Viele Plasmodien-Stämme, gegen die wiederholt mit
Chinolin vorgegangen wurde, haben einen Weg gefunden sich anzupassen und eine
Resistenz zu entwickeln. Jüngste Forschungsarbeiten haben jedoch gezeigt, dass
der Mechanismus hinter der entwickelten Resistenz, lediglich darin besteht, dass
vermehrt Glutathion produziert und eingesetzt wird. Diese Arbeiten haben
ebenfalls nachgewiesen, dass die Parasiten wieder auf Quinolin-Antibiotika
ansprechen, sobald das Glutathion oxidiert oder anderweitig vermindert wird.
Einige Versuche, bei denen man Oxidationsmittel parallel zu Quinolinen
eingesetzt hat, haben bereits erste Erfolge gezeitigt. Hierbei gilt es zu
berücksichtigen, dass keine noch so große Menge an Glutathion (GSH) in den
Plasmodien je gegen eine genügend hohe Dosis Chlordioxid bestehen könnte. Man
beachte, dass jedes Chlordioxid-Molekül je 5 Glutathion-Moleküle unschädlich
machen kann.
Lebewesen besitzen ein Wiedergewinnungssystem, durch das sie
oxidierte Schwefelverbindungen wiedergewinnen können. Dabei werden
Wasserstoffatome an diese Schwefel-Verbindungen abgegeben und so deren
ursprünglicher Zustand als Thiole wiederhergestellt.
Das Enzym
Glukose-6-Phosphat-Dehydrogenase (G6PDH) spielt hierbei eine Schlüsselrolle.
Patienten mit einem genetisch bedingten G6PDH-Defekt, besser bekannt als
Glukose-6-Phosphat-Dehydrogenase-Mangel, reagieren besonders empfindlich auf
Oxidationsmittel und prooxidative Medikamente. Diese genetisch bedingte
Erkrankung hat allerdings den Vorteil, dass die Betroffenen gemeinhin resistent
gegen Malaria sind. Zwar können auch sie erkranken, doch verläuft die Erkrankung
bei ihnen weit weniger schlimm, da sie nicht über eine genügende Menge an dem
Enzym verfügen, dass der Parasit braucht, um das Glutathion zu
reaktivieren.
Zudem wird G6PDH leicht durch Natriumchlorat gehemmt, ein
weiteres Mitglied der Familie der Chloroxid-Verbindungen. Natriumchlorat ist in
geringem Maße auch in Jim Humbles Anti-Malaria-Lösung enthalten. Unter leicht
alkalischen Bedingungen dürfte sich ein wenig Natriumchlorat auch in vivo als
Folge der langsamen Reaktion von Chlordioxid und Wasser bilden. Die Plasmodien
versuchen zwar, das Glutathion zu ersetzen, das bei der Oxidation verloren geht.
Wenn G6PDH aber durch Chlorat gehemmt wird, ist dies sehr schwer, wenn nicht gar
unmöglich.
6. Die Bedeutung von Eisen
Obgleich ein Grossteil der verfügbaren Literatur sich allein auf das gestörte
Redox-Gleichgewicht bezieht, das zu einem Mangel an Thiolen führt, sollten auch
andere toxische Mechanismen berücksichtigt werden, mit denen Chloroxid gegen
Plasmodien vorgeht. Chloroxide (z.B.:Chlorite) reagieren für gewöhnlich mit
zweiwertigem Eisen. Das erklärt, warum es beim Kontakt zu großen Mengen
Chloroxiden, wie z.B. Natriumchlorit, zu einem deutlichen Anstieg des
Methämoglobin- Spiegels kommt. Methämoglobin ist eine den Stoffwechsel nicht
beeinflussende Form des Hämoglobins, in der der Cofaktor zweiwertiges Eisen zu
dreiwertigem Eisen oxidiert ist. Viele Enzyme in Lebewesen, auch in Parasiten,
verwenden Eisen als Cofaktor. Daher ist anzunehmen, dass jede Schädigung der
Plasmodien durch Chloroxide (Chlorite, Chlorate) von der Wandlung der
zweiwertigen zu dreiwertigen Eisen-Cofaktoren begleitet wird.
7. Die Bedeutung der Polyamine
Weitere Metaboliten, die Tumore, Bakterien und Parasiten zum Wachstum und
Überleben brauchen, sind Polyamine. Fehlen diese, können Erreger nicht mehr
wachsen, sie sterben. Auch Polyamine reagieren leicht auf Oxidation und lassen
sich durch starke Oxidationsmittel zerstören.
Wenn Polyamine oxidieren,
verwandeln sie sich in Aldehyde, die wiederum tödlich für Parasiten und
Tumorzellen sind.
Somit richtet alles, was Polyamine oxidiert,
doppelten Schaden an den Krankheitserregern an. Man weiss, dass gerade
Chlordioxid besonders heftig mit sekundären Aminen reagiert. Zu den
sekundären Aminen zählen auch Spermien und Spermiden, die aus biologischer Sicht
beiden wichtigsten Polyaminen.
Quelle:
1) Jim Humble ; MMS-Der Durchbruch; Deutsche Erstausgabe
2008,Mobiwell-Verlag, Potsdam 2008, Anhang 1, S.186-204)
2) http://www.healthsalon.org/309/thomas-lee-hesselink-md-writes-on-mms-and-sodium-chlorite/
3)
http://www.npi.gov.au/database/substance-info/profiles/21.html
Anmerkung:
Nach meinen weltweiten Recherchen kann der Bericht von Thomas
Lee Hesseling zu den Oxidationsvorgängen im Zusammenhang mit Chlordioxid als
besonders wertvoll eingestuft werden. Er stützt die Ausführungen in dem
Arbeitsblatt „ Informationen zu Haftungsrisiken bei der Trinkwasserversorgung“
und vertieft die Applikation von Chlordioxid im allgemeinen und im besonderen
zur mikrobiologisch unbedenklichen Herstellung von Wasser für den menschlichen
Verzehr. Damit ist Chlordioxid auch in der Getränkeindustrie ( z.B: Coca-Cola)
ein zu favorisierendes Mittel zur Desinfektion der Anlagen und Geräte und des
durchfließendes Wassers, das für den menschlichen Gebrauch bestimmt ist.
(Dr.-Ing. Wolfgang Storch)
Mai 2009
Keine Kommentare:
Kommentar veröffentlichen